Cross-Modality Image Synthesis via Weakly Coupled and Geometry Co-Regularized Joint Dictionary Learning
نویسندگان
چکیده
منابع مشابه
Multi-Source image enhancement via Coupled Dictionary Learning
Motivation. Multi and Hyperspectral remote sensing imagery provide valuable insights regarding the composition of a scene and significantly facilitate tasks like object and material recognition, spectral unmixing and region clustering, among others [1], [2]. However, current remote sensing imaging architectures are unable to concurrently acquire high spatial and spectral resolution imagery, due...
متن کاملWeakly-supervised Dictionary Learning
We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly l...
متن کاملGraph regularized seismic dictionary learning
A graph-based regularization for geophysical inversion is proposed that offers a more efficient way to solve inverse denoising problems by dictionary learning methods designed to find a sparse signal representation that adaptively captures prominent characteristics in a given data. Most traditional dictionary learning methods convert 2D seismic data patches or 3D data volumes into 1D vectors fo...
متن کاملMulti-Focus Image Fusion Via Coupled Sparse Representation and Dictionary Learning
We address the multi-focus image fusion problem, where multiple images captured with different focal settings are to be fused into an all-in-focus image of higher quality. Algorithms for this problem necessarily admit the source image characteristics along with focused and blurred feature. However, most sparsity-based approaches use a single dictionary in focused feature space to describe multi...
متن کاملJoint Dictionary Learning for Example-based Image Super-resolution
In this paper, we propose a new joint dictionary learning method for example-based image super-resolution (SR), using sparse representation. The low-resolution (LR) dictionary is trained from a set of LR sample image patches. Using the sparse representation coefficients of these LR patches over the LR dictionary, the high-resolution (HR) dictionary is trained by minimizing the reconstruction er...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 2018
ISSN: 0278-0062,1558-254X
DOI: 10.1109/tmi.2017.2781192